Sequential Importance Sampling Based on a Committee of Artificial Neural Networks for Posterior Health Condition Estimation

Abstract : The output of real-time diagnostic systems based on the interpretation of signals from a sensor network is often affected by very large uncertainties if compared with local non-destructive testing methods. Sequential Importance Resampling (SIR) is used in this study to filter the output distribution from a committee of Artificial Neural Networks. The methodology is applied to a helicopter panel subject to fatigue crack propagation. Strain signals are acquired during crack evolution and a diagnostic unit trained on simulated experience provides damage assessment in real-time. This information is filtered through a SIR routine, providing model identification, model parameter estimation and crack length probability density function updating, conditioned on the observations at discrete time steps.
Type de document :
Communication dans un congrès
Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck. EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France. 2014
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01021052
Contributeur : Anne Jaigu <>
Soumis le : mercredi 9 juillet 2014 - 08:43:16
Dernière modification le : mercredi 9 juillet 2014 - 15:29:06
Document(s) archivé(s) le : jeudi 9 octobre 2014 - 10:51:32

Fichier

0170.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01021052, version 1

Collections

Citation

Claudio Sbarufatti. Sequential Importance Sampling Based on a Committee of Artificial Neural Networks for Posterior Health Condition Estimation. Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck. EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France. 2014. 〈hal-01021052〉

Partager

Métriques

Consultations de la notice

105

Téléchargements de fichiers

104