Structural Damage Classification Comparison Using Support Vector Machine and Bayesian Model Selection

Abstract : Since all damage identification strategies inevitably involve uncertainties from various sources, a higher level of characterization is necessary to facilitate decision-making in a statistically confident sense. Machine learning plays an important role in the decision-making process of damage detection, classification, and prognosis, which employs training data (or a validated model) and extracts useful information from the high-dimensional observations. This paper classifies the type of damage via support vector machine (SVM) in a supervised learning fashion, and selects the most plausible model for data interpretation. Therefore the separation of damage type and failure trajectory is transformed into a group classification process, under the influence of uncertainty. Given data observation, SVM is obtained under a training process, which characterizes the best classification boundaries for any future feature set. A rotary machine test-bed is employed, and vibration-based damage features are evaluated to demonstrate the proposed classification process.
Type de document :
Communication dans un congrès
Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck. EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France. 2014
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01022053
Contributeur : Anne Jaigu <>
Soumis le : jeudi 10 juillet 2014 - 09:59:30
Dernière modification le : jeudi 10 juillet 2014 - 10:36:45
Document(s) archivé(s) le : vendredi 10 octobre 2014 - 11:01:38

Fichier

0292.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01022053, version 1

Collections

Citation

Zhu Mao, Michael Todd. Structural Damage Classification Comparison Using Support Vector Machine and Bayesian Model Selection. Le Cam, Vincent and Mevel, Laurent and Schoefs, Franck. EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France. 2014. 〈hal-01022053〉

Partager

Métriques

Consultations de la notice

187

Téléchargements de fichiers

289