On-the-fly audio source separation

Abstract : This paper addresses the challenging task of single channel audio source separation. We introduce a novel concept of on-the-fly audio source separation which greatly simplifies the user's interaction with the system compared to the state-of-the-art user-guided approaches. In the proposed framework, the user is only asked to listen to an audio mixture and type some keywords (e.g. "dog barking", "wind", etc.) describing the sound sources to be separated. These keywords are then used as text queries to search for audio examples from the internet to guide the separation process. In particular, we propose several approaches to efficiently exploit these retrieved examples, including an approach based on a generic spectral model with group sparsity-inducing constraints. Finally, we demonstrate the effectiveness of the proposed framework with mixtures containing various types of sounds.
Type de document :
Communication dans un congrès
the 24th IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2014), Sep 2014, Reims, France. 2014
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01023221
Contributeur : Alexey Ozerov <>
Soumis le : vendredi 11 juillet 2014 - 16:10:54
Dernière modification le : lundi 14 juillet 2014 - 08:52:53
Document(s) archivé(s) le : samedi 11 octobre 2014 - 13:05:10

Fichier

ElBadawy_et_al_2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01023221, version 1

Citation

Dalia El Badawy, Ngoc Duong, Alexey Ozerov. On-the-fly audio source separation. the 24th IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2014), Sep 2014, Reims, France. 2014. 〈hal-01023221〉

Partager

Métriques

Consultations de la notice

343

Téléchargements de fichiers

859