Experiments in Leader Classification and Following with an Autonomous Wheelchair

Abstract : With decreasing costs in robotic platforms, mobile robots that provide assistance to humans are becoming a reality. A key requirement for these types of robots is the ability to efficiently and safely navigate in populated environments. This work proposes to address this issue by studying how robots can select and follow human leaders, to take advantage of their motion in complex situations. To accomplish this, a machine learning framework is proposed, comprising data acquisition with a real robot, data labeling, feature extraction and the training of a leader classifier. Preliminary experiments combined the classification system with a multi-mode navigation algorithm, to validate this approach using an autonomous wheelchair.
Type de document :
Communication dans un congrès
ISER 2014, Jun 2014, Marrakesh/Essaouira, Morocco. 2014
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01023896
Contributeur : Procópio Stein <>
Soumis le : mardi 15 juillet 2014 - 13:58:38
Dernière modification le : jeudi 11 octobre 2018 - 08:48:02
Document(s) archivé(s) le : vendredi 21 novembre 2014 - 18:05:41

Fichier

stein_iser14.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01023896, version 1

Collections

Citation

Procópio Stein, Anne Spalanzani, Vitor Santos, Christian Laugier. Experiments in Leader Classification and Following with an Autonomous Wheelchair. ISER 2014, Jun 2014, Marrakesh/Essaouira, Morocco. 2014. 〈hal-01023896〉

Partager

Métriques

Consultations de la notice

336

Téléchargements de fichiers

356