Improving memory efficiency for processing large-scale models

Gwendal Daniel 1 Gerson Sunyé 1, 2 Amine Benelallam 1, 2 Massimo Tisi 1
1 ATLANMOD - Modeling Technologies for Software Production, Operation, and Evolution
LINA - Laboratoire d'Informatique de Nantes Atlantique, Département informatique - EMN, Inria Rennes – Bretagne Atlantique
Abstract : Scalability is a main obstacle for applying Model-Driven Engineering to reverse engineering, or to any other activity manipulating large models. Existing solutions to persist and query large models are currently ine cient and strongly linked to memory availability. In this paper, we propose a memory unload strategy for Neo4EMF, a persistence layer built on top of the Eclipse Modeling Framework and based on a Neo4j database backend. Our solution allows us to partially unload a model during the execution of a query by using a periodical dirty saving mechanism and transparent reloading. Our experiments show that this approach enables to query large models in a restricted amount of memory with an acceptable performance.
Type de document :
Communication dans un congrès
BigMDE, Jul 2014, York, UK, United Kingdom. 2014
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01033188
Contributeur : Amine Benelallam <>
Soumis le : mardi 22 juillet 2014 - 18:16:16
Dernière modification le : mercredi 5 décembre 2018 - 01:22:14
Document(s) archivé(s) le : mardi 25 novembre 2014 - 11:35:37

Fichier

bigmde14_submission_6_1_.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01033188, version 1

Collections

Citation

Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo Tisi. Improving memory efficiency for processing large-scale models. BigMDE, Jul 2014, York, UK, United Kingdom. 2014. 〈hal-01033188〉

Partager

Métriques

Consultations de la notice

609

Téléchargements de fichiers

557