Separable Cosparse Analysis Operator Learning

Abstract : The ability of having a sparse representation for a certain class of signals has many applications in data analysis, image processing, and other research fields. Among sparse representations, the cosparse analysis model has recently gained increasing interest. Many signals exhibit a multidimensional structure, e.g. images or three-dimensional MRI scans. Most data analysis and learning algorithms use vectorized signals and thereby do not account for this underlying structure. The drawback of not taking the inherent structure into account is a dramatic increase in computational cost. We propose an algorithm for learning a cosparse Analysis Operator that adheres to the preexisting structure of the data, and thus allows for a very efficient implementation. This is achieved by enforcing a separable structure on the learned operator. Our learning algorithm is able to deal with multi- dimensional data of arbitrary order. We evaluate our method on volumetric data at the example of three-dimensional MRI scans.
Type de document :
Communication dans un congrès
EUSIPCO 2014 - European Signal Processing Conference, Sep 2014, Lisbonne, Portugal. 2014
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01054124
Contributeur : Rémi Gribonval <>
Soumis le : mardi 5 août 2014 - 10:22:24
Dernière modification le : mercredi 16 mai 2018 - 11:24:07
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 00:21:29

Fichier

1569924571.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01054124, version 1

Citation

Matthias Seibert, Julian Wörmann, Rémi Gribonval, Martin Kleinsteuber. Separable Cosparse Analysis Operator Learning. EUSIPCO 2014 - European Signal Processing Conference, Sep 2014, Lisbonne, Portugal. 2014. 〈hal-01054124〉

Partager

Métriques

Consultations de la notice

1513

Téléchargements de fichiers

248