Rule Learning with Negation: Issues Regarding Effectiveness

Abstract : An investigation of rule learning processes that allow the inclusion of negated features is described. The objective is to establish whether the use of negation in inductive rule learning systems is effective with respect to classification. This paper seeks to answer this question by considering two issues relevant to such systems; feature identification and rule refinement. Both synthetic and real datasets are used to illustrate solutions to the identified issues and to demonstrate that the use of negative features in inductive rule learning systems is indeed beneficial.
Type de document :
Communication dans un congrès
Zhongzhi Shi; Sunil Vadera; Agnar Aamodt; David Leake. 6th IFIP TC 12 International Conference on Intelligent Information Processing (IIP), Oct 2010, Manchester, United Kingdom. Springer, IFIP Advances in Information and Communication Technology, AICT-340, pp.193-202, 2010, Intelligent Information Processing V. 〈10.1007/978-3-642-16327-2_25〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01055059
Contributeur : Hal Ifip <>
Soumis le : lundi 11 août 2014 - 13:01:34
Dernière modification le : lundi 15 janvier 2018 - 11:43:26
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 21:56:35

Fichier

Rule_Learning_With_Negation_Is...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Stephanie Chua, Frans Coenen, Grant Malcolm. Rule Learning with Negation: Issues Regarding Effectiveness. Zhongzhi Shi; Sunil Vadera; Agnar Aamodt; David Leake. 6th IFIP TC 12 International Conference on Intelligent Information Processing (IIP), Oct 2010, Manchester, United Kingdom. Springer, IFIP Advances in Information and Communication Technology, AICT-340, pp.193-202, 2010, Intelligent Information Processing V. 〈10.1007/978-3-642-16327-2_25〉. 〈hal-01055059〉

Partager

Métriques

Consultations de la notice

247

Téléchargements de fichiers

77