Animal Disease Diagnoses Expert System Based on SVM

Abstract : Livestock breeding farms usually distribute in remote areas, with relatively poor condition of disease diagnosis. Generally, it is hard to carry out disease diagnosis rapidly and accurately. But the farms can diagnose animal disease quickly and accurately by the animal disease diagnoses expert system. It could ensure a sound development of the stockbreeding industry. This paper proved the practicality of support vector machine (SVM) which is used in the animal disease diagnoses expert system in theory by studying the disease diagnosis expert system based on SVM. And the experiments proved that SVM can make the disease diagnose accurately.
Type de document :
Communication dans un congrès
Daoliang Li; Chunjiang Zhao. Third IFIP TC 12 International Conference on Computer and Computing Technologies in Agriculture III (CCTA), Oct 2009, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-317, pp.539-545, 2010, Computer and Computing Technologies in Agriculture III. 〈10.1007/978-3-642-12220-0_78〉
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01055402
Contributeur : Hal Ifip <>
Soumis le : mardi 12 août 2014 - 17:41:27
Dernière modification le : mardi 8 août 2017 - 17:18:16
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 23:12:05

Fichier

1509--Long_Wan.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Long Wan, Wenxing Bao. Animal Disease Diagnoses Expert System Based on SVM. Daoliang Li; Chunjiang Zhao. Third IFIP TC 12 International Conference on Computer and Computing Technologies in Agriculture III (CCTA), Oct 2009, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-317, pp.539-545, 2010, Computer and Computing Technologies in Agriculture III. 〈10.1007/978-3-642-12220-0_78〉. 〈hal-01055402〉

Partager

Métriques

Consultations de la notice

88

Téléchargements de fichiers

1222