Research of Rice-Quality Based on Computer Vision and Near Infrared Spectroscopy

Abstract : A rapid and nondestructive way to measure protein and amylose content of rice was put forward based on near infrared(NIR) spectral technology. The NIR spectra were acquired from 13 varieties of rice with the wavelength from700 to 1100nm. The objectives of the present study were to establish forecasting model to find out the relationship between the absorbance of the spectrum and the main components of rice. By using the machine vision-based method, the rice appearance quality can be studied. On the basis of the evaluation criteria, 13 different kinds of rice were classified. And according to the usage of neural network, the detection model was established, so it can lay the foundation for the prediction grade of the unknown kinds of rice in the future.
Type de document :
Communication dans un congrès
Daoliang Li; Chunjiang Zhao. Third IFIP TC 12 International Conference on Computer and Computing Technologies in Agriculture III (CCTA), Oct 2009, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-317, pp.523-531, 2010, Computer and Computing Technologies in Agriculture III. 〈10.1007/978-3-642-12220-0_76〉
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01055403
Contributeur : Hal Ifip <>
Soumis le : mardi 12 août 2014 - 17:42:51
Dernière modification le : mardi 8 août 2017 - 17:16:46
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 23:12:22

Fichier

1402--RuoKui_Chang.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Ruokui Chang, Weiyu Zhang, Jing Cui, Yuanhong Wang, Yong Wei, et al.. Research of Rice-Quality Based on Computer Vision and Near Infrared Spectroscopy. Daoliang Li; Chunjiang Zhao. Third IFIP TC 12 International Conference on Computer and Computing Technologies in Agriculture III (CCTA), Oct 2009, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-317, pp.523-531, 2010, Computer and Computing Technologies in Agriculture III. 〈10.1007/978-3-642-12220-0_76〉. 〈hal-01055403〉

Partager

Métriques

Consultations de la notice

62

Téléchargements de fichiers

355