Efficient Recovery from False State in Distributed Routing Algorithms

Abstract : Malicious and misconfigured nodes can inject incorrect state into a distributed system, which can then be propagated system-wide as a result of normal network operation. Such false state can degrade the performance of a distributed system or render it unusable. For example, in the case of network routing algorithms, false state corresponding to a node incorrectly declaring a cost of 0 to all destinations (maliciously or due to misconfiguration) can quickly spread through the network. This causes other nodes to (incorrectly) route via the misconfigured node, resulting in suboptimal routing and network congestion. We propose three algorithms for efficient recovery in such scenarios and prove the correctness of each of these algorithms. Through simulation, we evaluate our algorithms - in terms of message and time overhead - when applied to removing false state in distance vector routing. Our analysis shows that over topologies where link costs remain fixed and for the same topologies where link costs change, a recovery algorithm based on system-wide checkpoints and a rollback mechanism yields superior performance when using the poison reverse optimization.
Document type :
Conference papers
Complete list of metadatas

Cited literature [17 references]  Display  Hide  Download

https://hal.inria.fr/hal-01056312
Contributor : Hal Ifip <>
Submitted on : Monday, August 18, 2014 - 3:45:12 PM
Last modification on : Tuesday, August 6, 2019 - 11:38:50 AM
Long-term archiving on : Thursday, November 27, 2014 - 5:31:19 AM

File

main.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Daniel Gyllstrom, Sudarshan Vasudevan, Jim Kurose, Gerome Miklau. Efficient Recovery from False State in Distributed Routing Algorithms. 9th International IFIP TC 6 Networking Conference (NETWORKING), May 2010, Chennai, India. pp.198-212, ⟨10.1007/978-3-642-12963-6_16⟩. ⟨hal-01056312⟩

Share

Metrics

Record views

363

Files downloads

278