Cybermetrics: User Identification through Network Flow Analysis

Abstract : Recent studies on user identification focused on behavioral aspects of biometric patterns, such as keystroke dynamics or activity cycles in on-line games. The aim of our work is to identify users through the detection and analysis of characteristic network flow patterns. The transformation of concepts from the biometric domain into the network domain leads to the concept of a cybermetric pattern -- a pattern that identifies a user based on her characteristic Internet activity.
Type de document :
Communication dans un congrès
Burkhard Stiller; Filip Turck. 4th International Conference on Autonomous Infrastructure, Management and Security (AIMS), Jun 2010, Zurich, Switzerland. Springer, Lecture Notes in Computer Science, LNCS-6155, pp.167-170, 2010, Mechanisms for Autonomous Management of Networks and Services. 〈10.1007/978-3-642-13986-4_24〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01056631
Contributeur : Hal Ifip <>
Soumis le : mercredi 20 août 2014 - 12:22:57
Dernière modification le : vendredi 11 août 2017 - 16:20:24
Document(s) archivé(s) le : jeudi 27 novembre 2014 - 11:36:48

Fichier

61550167.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Nikolay Melnikov, Jürgen Schönwälder. Cybermetrics: User Identification through Network Flow Analysis. Burkhard Stiller; Filip Turck. 4th International Conference on Autonomous Infrastructure, Management and Security (AIMS), Jun 2010, Zurich, Switzerland. Springer, Lecture Notes in Computer Science, LNCS-6155, pp.167-170, 2010, Mechanisms for Autonomous Management of Networks and Services. 〈10.1007/978-3-642-13986-4_24〉. 〈hal-01056631〉

Partager

Métriques

Consultations de la notice

87

Téléchargements de fichiers

353