Machine Learning Patterns for Neuroimaging-Genetic Studies in the Cloud

Abstract : Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a two weeks deployment on hundreds of virtual machines.
Type de document :
Article dans une revue
Frontiers in Neuroinformatics, Frontiers, 2014, Recent advances and the future generation of neuroinformatics infrastructure, 8, 〈10.3389/fninf.2014.00031〉
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01057325
Contributeur : Bertrand Thirion <>
Soumis le : vendredi 22 août 2014 - 11:37:40
Dernière modification le : lundi 4 juin 2018 - 15:42:02
Document(s) archivé(s) le : jeudi 27 novembre 2014 - 13:41:03

Fichier

frontiers.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Benoit Da Mota, Radu Tudoran, Alexandru Costan, Gaël Varoquaux, Goetz Brasche, et al.. Machine Learning Patterns for Neuroimaging-Genetic Studies in the Cloud. Frontiers in Neuroinformatics, Frontiers, 2014, Recent advances and the future generation of neuroinformatics infrastructure, 8, 〈10.3389/fninf.2014.00031〉. 〈hal-01057325〉

Partager

Métriques

Consultations de la notice

1159

Téléchargements de fichiers

429