Adaptive multi-scale analysis for point-based surface editing

Georges Nader 1, * G. Guennebaud 2, 3, 4 Nicolas Mellado 5
* Corresponding author
1 M2DisCo - Geometry Processing and Constrained Optimization
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
4 MANAO - Melting the frontiers between Light, Shape and Matter
LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest, LP2N - Laboratoire Photonique, Numérique et Nanosciences
5 Smart Geometry Processing Group
Department of Computer Science
Abstract : This paper presents a tool that enables the direct editing of surface features in large point-clouds or meshes. This is made possible by a novel multi-scale analysis of unstructured point-clouds that automatically extracts the number of relevant features together with their respective scale all over the surface. Then, combining this ingredient with an adequate multi-scale decomposition allows us to directly enhance or reduce each feature in an independent manner. Our feature extraction is based on the analysis of the scale-variations of locally fitted surface primitives combined with unsupervised learning techniques. Our tool may be applied either globally or locally, and millions of points are handled in real-time. The resulting system enables users to accurately edit complex geometries with minimal interaction.
Document type :
Journal articles
Liste complète des métadonnées


https://hal.inria.fr/hal-01059392
Contributor : Xavier Granier <>
Submitted on : Wednesday, March 29, 2017 - 5:56:47 PM
Last modification on : Thursday, November 1, 2018 - 1:19:49 AM

Annex

Identifiers

Citation

Georges Nader, G. Guennebaud, Nicolas Mellado. Adaptive multi-scale analysis for point-based surface editing. Computer Graphics Forum, Wiley, 2014, pp.9. ⟨10.1111/cgf.12485⟩. ⟨hal-01059392⟩

Share

Metrics

Record views

928

Files downloads

18