Extracting Comparative Commonsense from the Web

Abstract : Commonsense acquisition is one of the most important and challenging topics in Artificial Intelligence. Comparative commonsense, such as "In general, a man is stronger than a woman", denotes that one entity has a property or quality greater or less in extent than that of another. This paper presents an automatic method for acquiring comparative commonsense from the World Wide Web. We firstly extract potential comparative statements from related texts based on multiple lexico-syntactic patterns. Then, we assess the candidates using Web-scale statistical features. To evaluate this approach, we use three measures: coverage of the web corpora, precision and recall which achieved 79.2%, 76.4% and 83.3%, respectively in our experiments. And the experimental results show that this approach profits significantly when the semantic similarity relationships are involved in the commonsense assessment.
Type de document :
Communication dans un congrès
Zhongzhi Shi; Sunil Vadera; Agnar Aamodt; David Leake. 6th IFIP TC 12 International Conference on Intelligent Information Processing (IIP), Oct 2010, Manchester, United Kingdom. Springer, IFIP Advances in Information and Communication Technology, AICT-340, pp.154-162, 2010, Intelligent Information Processing V. 〈10.1007/978-3-642-16327-2_21〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01060361
Contributeur : Hal Ifip <>
Soumis le : mardi 21 novembre 2017 - 16:36:59
Dernière modification le : mercredi 22 novembre 2017 - 01:22:18

Fichier

CaoCZWW10.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Yanan Cao, Cungen Cao, Liangjun Zang, Shi Wang, Dongsheng Wang. Extracting Comparative Commonsense from the Web. Zhongzhi Shi; Sunil Vadera; Agnar Aamodt; David Leake. 6th IFIP TC 12 International Conference on Intelligent Information Processing (IIP), Oct 2010, Manchester, United Kingdom. Springer, IFIP Advances in Information and Communication Technology, AICT-340, pp.154-162, 2010, Intelligent Information Processing V. 〈10.1007/978-3-642-16327-2_21〉. 〈hal-01060361〉

Partager

Métriques

Consultations de la notice

66

Téléchargements de fichiers

14