A Filter-Based Evolutionary Approach for Selecting Features in High-Dimensional Micro-array Data

Abstract : Evolutionary algorithms have received much attention in extracting knowledge on high-dimensional micro-array data, being crucial to their success a suitable definition of the search space of the potential solutions. In this paper, we present an evolutionary approach for selecting informative genes (features) to predict and diagnose cancer. We propose a procedure that combines results of filter methods, which are commonly used in the field of data mining, to reduce the search space where a genetic algorithm looks for solutions (i.e. gene subsets) with better classification performance, being the quality (fitness) of each solution evaluated by a classification method. The methodology is quite general because any classification algorithm could be incorporated as well a variety of filter methods. Extensive experiments on a public micro-array dataset are presented using four popular filter methods and SVM.
Type de document :
Communication dans un congrès
Zhongzhi Shi; Sunil Vadera; Agnar Aamodt; David Leake. 6th IFIP TC 12 International Conference on Intelligent Information Processing (IIP), Oct 2010, Manchester, United Kingdom. Springer, IFIP Advances in Information and Communication Technology, AICT-340, pp.297-307, 2010, Intelligent Information Processing V. 〈10.1007/978-3-642-16327-2_36〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01060366
Contributeur : Hal Ifip <>
Soumis le : jeudi 4 septembre 2014 - 12:53:45
Dernière modification le : vendredi 11 août 2017 - 14:50:48
Document(s) archivé(s) le : vendredi 5 décembre 2014 - 10:11:25

Fichier

3400307.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Laura Maria Cannas, Nicoletta Dessì, Barbara Pes. A Filter-Based Evolutionary Approach for Selecting Features in High-Dimensional Micro-array Data. Zhongzhi Shi; Sunil Vadera; Agnar Aamodt; David Leake. 6th IFIP TC 12 International Conference on Intelligent Information Processing (IIP), Oct 2010, Manchester, United Kingdom. Springer, IFIP Advances in Information and Communication Technology, AICT-340, pp.297-307, 2010, Intelligent Information Processing V. 〈10.1007/978-3-642-16327-2_36〉. 〈hal-01060366〉

Partager

Métriques

Consultations de la notice

171

Téléchargements de fichiers

112