An Optimal Scaling Approach to Collaborative Filtering Using Categorical Principal Component Analysis and Neighborhood Formation

Abstract : Collaborative Filtering (CF) is a popular technique employed by Recommender Systems, a term used to describe intelligent methods that generate personalized recommendations. The most common and accurate approaches to CF are based on latent factor models. Latent factor models can tackle two fundamental problems of CF, data sparsity and scalability and have received considerable attention in recent literature. In this work, we present an optimal scaling approach to address both of these problems using Categorical Principal Component Analysis for the low-rank approximation of the user-item ratings matrix, followed by a neighborhood formation step. The optimal scaling approach has the advantage that it can be easily extended to the case when there are missing data and restrictions for ordinal and numerical variables can be easily imposed. We considered different measurement levels for the user ratings on items, starting with a multiple nominal and consecutively applying nominal, ordinal and numeric levels. Experiments were executed on the MovieLens dataset, aiming to evaluate the aforementioned options in terms of accuracy. Results indicated that a combined approach (multiple nominal measurement level, ''passive'' missing data strategy) clearly outperformed the other tested options.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Max Bramer. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. Springer, IFIP Advances in Information and Communication Technology, AICT-339, pp.22-29, 2010, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-16239-8_6〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01060647
Contributeur : Hal Ifip <>
Soumis le : vendredi 17 novembre 2017 - 14:11:56
Dernière modification le : lundi 30 juillet 2018 - 12:02:02
Document(s) archivé(s) le : dimanche 18 février 2018 - 16:10:00

Fichier

MarkosVM10.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Angelos I. Markos, Manolis G. Vozalis, Konstantinos G. Margaritis. An Optimal Scaling Approach to Collaborative Filtering Using Categorical Principal Component Analysis and Neighborhood Formation. Harris Papadopoulos; Andreas S. Andreou; Max Bramer. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. Springer, IFIP Advances in Information and Communication Technology, AICT-339, pp.22-29, 2010, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-16239-8_6〉. 〈hal-01060647〉

Partager

Métriques

Consultations de la notice

56

Téléchargements de fichiers

16