Metric Learning for Temporal Sequence Alignment

Damien Garreau 1, 2 Rémi Lajugie 1, 2 Sylvain Arlot 1, 2 Francis Bach 1, 2
1 SIERRA - Statistical Machine Learning and Parsimony
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8548
Abstract : In this paper, we propose to learn a Mahalanobis distance to perform alignment of multivariate time series. The learning examples for this task are time series for which the true alignment is known. We cast the alignment problem as a structured prediction task, and propose realistic losses between alignments for which the optimization is tractable. We provide experiments on real data in the audio to audio context, where we show that the learning of a similarity measure leads to improvements in the performance of the alignment task. We also propose to use this metric learning framework to perform feature selection and, from basic audio features, build a combination of these with better performance for the alignment.
Document type :
Conference papers
Advances in Neural Information Processing Systems 27 (NIPS 2014), Dec 2014, Montréal, Canada
Liste complète des métadonnées

https://hal.inria.fr/hal-01062130
Contributor : <>
Submitted on : Wednesday, September 10, 2014 - 10:23:00 AM
Last modification on : Thursday, September 29, 2016 - 1:22:15 AM
Document(s) archivé(s) le : Thursday, December 11, 2014 - 11:51:12 AM

Files

Identifiers

  • HAL Id : hal-01062130, version 1
  • Password :
  • ARXIV : 1409.3136

Collections

Citation

Damien Garreau, Rémi Lajugie, Sylvain Arlot, Francis Bach. Metric Learning for Temporal Sequence Alignment. Advances in Neural Information Processing Systems 27 (NIPS 2014), Dec 2014, Montréal, Canada. 〈hal-01062130〉

Share

Metrics

Record views

551

Files downloads

377