Imperfect answers in multiple choice questionnaires

Abstract : Multiple choice questions (MCQs) are the most common and computably tractable ways of assessing the knowledge of a student, but they restrain the students to express a precise answer that doesn't really represent what they know, leaving no room for ambiguities or doubts. We propose Ev-MCQs (Evidential MCQs), an application of belief function theory for the management of the uncertainty and imprecision of MCQ answers. Intelligent Tutoring Systems (ITS) and e-Learning applications could exploit the richness of the information gathered through the acquisition of imperfect answers through Ev-MCQs in order to obtain a richer student model, closer to the real state of the student, considering their degree of knowledge acquisition and misconception.
Type de document :
Communication dans un congrès
EC-TEL 2008 - 3rd European Conference on Technology Enhanced Learning, Sep 2008, Maastricht, Netherlands. Springer, 5192, pp.144-154, 2008, Lecture Notes in Computer Science. 〈10.1007/978-3-540-87605-2_17〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01072218
Contributeur : Maria Rifqi <>
Soumis le : mardi 7 octobre 2014 - 17:36:36
Dernière modification le : vendredi 31 août 2018 - 09:25:55

Identifiants

Collections

Citation

Javier Diaz, Maria Rifqi, Bernadette Bouchon-Meunier, Sandra Jhean-Larose, Guy Denhière. Imperfect answers in multiple choice questionnaires. EC-TEL 2008 - 3rd European Conference on Technology Enhanced Learning, Sep 2008, Maastricht, Netherlands. Springer, 5192, pp.144-154, 2008, Lecture Notes in Computer Science. 〈10.1007/978-3-540-87605-2_17〉. 〈hal-01072218〉

Partager

Métriques

Consultations de la notice

66