Adaptation for the Masses: Towards Decentralized Adaptation in Large-Scale P2P Recommenders

Abstract : Decentralized recommenders have been proposed to deliver privacy-preserving, personalized and highly scalable on-line recommendation services. Current implementations tend, however, to rely on hard-wired, mechanisms that cannot adapt. Deciding beforehand which hard-wired mechanism to use can be difficult, as the optimal choice might depend on conditions that are unknown at design time. In this pa-per, propose a framework to develop dynamically adaptive decentralized recommendation systems. Our proposal sup-ports a decentralized form of adaptation, in which individual nodes can independently select, and update their own rec-ommendation algorithm, while still collectively contributing to the overall system's services.
Type de document :
Communication dans un congrès
Workshop on Adaptive and Reflective Middleware ARM 2014, Dec 2014, Bordeaux, France. 〈10.1145/2677017.2677021〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01080030
Contributeur : Davide Frey <>
Soumis le : mardi 4 novembre 2014 - 13:39:59
Dernière modification le : mercredi 11 avril 2018 - 02:01:10
Document(s) archivé(s) le : jeudi 5 février 2015 - 10:36:51

Fichier

similitude-main.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

Citation

Davide Frey, Anne-Marie Kermarrec, Christopher Maddock, Andreas Mauthe, François Taïani. Adaptation for the Masses: Towards Decentralized Adaptation in Large-Scale P2P Recommenders. Workshop on Adaptive and Reflective Middleware ARM 2014, Dec 2014, Bordeaux, France. 〈10.1145/2677017.2677021〉. 〈hal-01080030〉

Partager

Métriques

Consultations de la notice

1619

Téléchargements de fichiers

216