Statistical detection and isolation of additive faults in linear time-varying systems

Abstract : This paper describes a statistical approach to fault detection and isolation for linear time-varying (LTV) systems subject to additive faults with time-varying profiles. The proposed approach combines a generalized likelihood ratio (GLR) test with a recursive filter that cancels out the dynamics of the monitored fault effects. To our knowledge, the proposed recursive filter is new for the considered faults. The resulting algorithm handles fault isolation with weaker assumptions than usual, in particular regarding the requirements on the number of sensors and on the stability of the monitored system. Numerical results for leakage detection in a gas transportation network illustrate the effectiveness of the proposed method.
Type de document :
Article dans une revue
Automatica, Elsevier, 2014, 50 (10), pp.2527-2538. 〈10.1016/j.automatica.2014.09.004〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01081899
Contributeur : Qinghua Zhang <>
Soumis le : mercredi 12 novembre 2014 - 10:33:36
Dernière modification le : mercredi 11 avril 2018 - 02:01:26

Identifiants

Citation

Qinghua Zhang, Michèle Basseville. Statistical detection and isolation of additive faults in linear time-varying systems. Automatica, Elsevier, 2014, 50 (10), pp.2527-2538. 〈10.1016/j.automatica.2014.09.004〉. 〈hal-01081899〉

Partager

Métriques

Consultations de la notice

247