Saliency aggregation: Does unity make strength?

Olivier Le Meur 1, * Zhi Liu 2
* Auteur correspondant
1 Sirocco - Analysis representation, compression and communication of visual data
Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Résumé : In this study, we investigate whether the aggregation of saliency maps allows to outperform the best saliency models. This paper discusses various aggregation methods; six unsupervised and four supervised learning methods are tested on two existing eye fixation datasets. Results show that a simple average of the TOP 2 saliency maps significantly outperforms the best saliency models. Considering more saliency models tends to decrease the performance, even when robust aggregation methods are used. Concerning the supervised learning methods, we provide evidence that it is possible to further increase the performance, under the condition that an image similar to the input image can be found in the training dataset. Our results might have an impact for critical applications which require robust and relevant saliency maps.
Type de document :
Communication dans un congrès
12th Asian Conference on Computer Vision (ACCV 2014), Nov 2014, Singapor, Singapore. 2014
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01085898
Contributeur : Olivier Le Meur <>
Soumis le : vendredi 21 novembre 2014 - 14:19:24
Dernière modification le : mercredi 16 mai 2018 - 11:23:38
Document(s) archivé(s) le : lundi 23 février 2015 - 09:07:06

Fichiers

poster.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01085898, version 1

Citation

Olivier Le Meur, Zhi Liu. Saliency aggregation: Does unity make strength?. 12th Asian Conference on Computer Vision (ACCV 2014), Nov 2014, Singapor, Singapore. 2014. 〈hal-01085898〉

Partager

Métriques

Consultations de la notice

307

Téléchargements de fichiers

142