Predicting Software Defects with Causality Tests

Abstract : In this paper, we propose a defect prediction approach centered on more robust evidences towards causality between source code metrics (as predictors) and the occurrence of defects. More specifically, we rely on the Granger Causality Test to evaluate whether past variations in source code metrics values can be used to forecast changes in a time series of defects. Our approach triggers alarms when changes made to the source code of a target system have a high chance of producing defects. We evaluated our approach in several life stages of four Java-based systems. We reached an average precision of 50% in three out of the four systems we evaluated. Moreover, by comparing our approach with baselines that are not based on causality tests, it achieved a better precision.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01086783
Contributeur : Lse Lse <>
Soumis le : vendredi 14 octobre 2016 - 09:38:58
Dernière modification le : mardi 17 avril 2018 - 09:08:35

Fichier

2013_jss.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Cesar Couto, Pedro Pires, Marco Valente, Roberto Bigonha, Nicolas Anquetil. Predicting Software Defects with Causality Tests. 2016. 〈hal-01086783〉

Partager

Métriques

Consultations de la notice

138

Téléchargements de fichiers

87