Predicting Software Defects with Causality Tests

Abstract : In this paper, we propose a defect prediction approach centered on more robust evidences towards causality between source code metrics (as predictors) and the occurrence of defects. More specifically, we rely on the Granger Causality Test to evaluate whether past variations in source code metrics values can be used to forecast changes in a time series of defects. Our approach triggers alarms when changes made to the source code of a target system have a high chance of producing defects. We evaluated our approach in several life stages of four Java-based systems. We reached an average precision of 50% in three out of the four systems we evaluated. Moreover, by comparing our approach with baselines that are not based on causality tests, it achieved a better precision.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger
Contributeur : Lse Lse <>
Soumis le : vendredi 14 octobre 2016 - 09:38:58
Dernière modification le : mardi 2 octobre 2018 - 14:28:12


Fichiers produits par l'(les) auteur(s)




Cesar Couto, Pedro Pires, Marco Valente, Roberto Bigonha, Nicolas Anquetil. Predicting Software Defects with Causality Tests. 2016. 〈hal-01086783〉



Consultations de la notice


Téléchargements de fichiers