Computing Semicommutation Closures: a Machine Learning Approach

Maxime Bride 1 Pierre-Cyrille Héam 2, 1 Isabelle Jacques 2
1 CASSIS - Combination of approaches to the security of infinite states systems
FEMTO-ST - Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174), Inria Nancy - Grand Est, LORIA - FM - Department of Formal Methods
Abstract : Semicommutation relations are simple rewriting relation on finite words using rules of the form ab → ba. In this paper we present how to use Angluin style machine learning algorithms to compute the image of regular language by the transitive closure of a semicommutation relation.
Document type :
Reports
Complete list of metadatas

Cited literature [31 references]  Display  Hide  Download

https://hal.inria.fr/hal-01087740
Contributor : Pierre-Cyrille Heam <>
Submitted on : Tuesday, December 2, 2014 - 10:37:17 AM
Last modification on : Tuesday, December 18, 2018 - 4:38:25 PM
Long-term archiving on : Tuesday, March 3, 2015 - 10:05:31 AM

Files

mainLearning.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01087740, version 1

Citation

Maxime Bride, Pierre-Cyrille Héam, Isabelle Jacques. Computing Semicommutation Closures: a Machine Learning Approach. [Research Report] FEMTO-ST. 2014. ⟨hal-01087740⟩

Share

Metrics

Record views

319

Files downloads

202