Motion planning in crowds using statistical model checking to enhance the social force model

Abstract : Crowded environments pose a challenge to the comfort and safety of those with impaired ability. To address this challenge we have developed an efficient algorithm that may be embedded in a portable device. The algorithm anticipates undesirable circumstances in real time, by verifying simulation traces of local crowd dynamics against temporal logical formulae. The model incorporates the objectives of the user, pre-existing knowledge of the environment and real time sensor data. The algorithm is thus able to suggest a course of action to achieve the user's changing goals, while minimising the probability of problems for the user and others in the environment. To demonstrate our algorithm we have implemented it in an autonomous computing device that we show is able to negotiate complex virtual environments. The performance of our implementation demonstrates that our technology can be successfully applied in a portable device or robot.
Type de document :
Communication dans un congrès
CDC 2013 - IEEE 52nd Annual Conference on Decision and Control, Dec 2013, Florence, Italy. IEEE, IEEE Xplore Digital Library, pp.3602 - 3608, 2013, 〈10.1109/CDC.2013.6760437〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01088031
Contributeur : Sean Sedwards <>
Soumis le : jeudi 27 novembre 2014 - 11:28:02
Dernière modification le : mercredi 16 mai 2018 - 11:24:07
Document(s) archivé(s) le : lundi 2 mars 2015 - 09:21:54

Fichier

Colombo-et-al2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Alessio Colombo, Daniele Fontanelli, Axel Legay, Luigi Palopoli, Sean Sedwards. Motion planning in crowds using statistical model checking to enhance the social force model. CDC 2013 - IEEE 52nd Annual Conference on Decision and Control, Dec 2013, Florence, Italy. IEEE, IEEE Xplore Digital Library, pp.3602 - 3608, 2013, 〈10.1109/CDC.2013.6760437〉. 〈hal-01088031〉

Partager

Métriques

Consultations de la notice

406

Téléchargements de fichiers

141