Calculus via regularizations in Banach spaces and Kolmogorov-type path-dependent equations

Abstract : The paper reminds the basic ideas of stochastic calculus via regularizations in Banach spaces and its applications to the studyof strict solutions of Kolmogorov path dependent equations associated with "windows" of diffusion processes. One makes the link between the Banach space approach and the so called functional stochastic calculus. When no strict solutions are available one describes the notion of strong-viscosity solution which alternative (in infinite dimension) to the classical notion of viscosity solution.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [51 references]  Display  Hide  Download

https://hal.inria.fr/hal-01088856
Contributor : Francesco Russo <>
Submitted on : Friday, November 28, 2014 - 6:01:01 PM
Last modification on : Wednesday, July 3, 2019 - 10:48:04 AM
Long-term archiving on : Friday, April 14, 2017 - 11:17:54 PM

Files

CDRSubmitted26nov2014.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01088856, version 1
  • ARXIV : 1411.8000

Citation

Andrea Cosso, Cristina Di Girolami, Francesco Russo. Calculus via regularizations in Banach spaces and Kolmogorov-type path-dependent equations. 2014. ⟨hal-01088856⟩

Share

Metrics

Record views

369

Files downloads

226