LinkWave: une Liste d'Adjacence Visuelle Interactive pour explorer les Réseaux Pondérés Dynamiques

Abstract : As the nature and types of graphs in numerous fields such as social sciences, engineering, and biology continue to proliferate, common graph techniques no longer always suffice. In particular, we tackle the problem of visualizing dynamic weighted graphs—graphs with edges whose weight changes over time—to extract connectivity and sequencing patterns. We present LinkWave, a novel technique employing the concept of a visual list of edges. To better support the visual exploration of weight changes in edges and to characterize their rhythmic patterns, LinkWave represents each edge as an individual time series and provides a set of interactions to zoom, filter, sort, and aggregate the edges. We designed LinkWave in collaboration with neuroscientists seeking to extract patterns caused by degenerative diseases in functional brain connectivity data. We report preliminary findings neuroscientists discovered with LinkWave.
Liste complète des métadonnées

Cited literature [32 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01090425
Contributor : Ihm14 Ihm14 <>
Submitted on : Wednesday, December 3, 2014 - 3:03:35 PM
Last modification on : Friday, March 22, 2019 - 1:33:40 AM
Document(s) archivé(s) le : Saturday, April 15, 2017 - 2:18:19 AM

File

p113-riche.pdf
Files produced by the author(s)

Identifiers

Citation

Nathalie Henry Riche, Yann Riche, Nicolas Roussel, Sheelagh Carpendale, Tara Madhyastha, et al.. LinkWave: une Liste d'Adjacence Visuelle Interactive pour explorer les Réseaux Pondérés Dynamiques. IHM'14, 26e conférence francophone sur l'Interaction Homme-Machine, Oct 2014, Lille, France. pp.113-122, ⟨10.1145/2670444.2670461⟩. ⟨hal-01090425⟩

Share

Metrics

Record views

438

Files downloads

291