Diffusion Matrices from Algebraic-Geometry Codes with Efficient SIMD Implementation

Abstract : This paper investigates large linear mappings with very good diffusion and efficient software implementations, that can be used as part of a block cipher design. The mappings are derived from linear codes over a small field (typically F 2 4) with a high dimension (typically 16) and a high minimum distance. This results in diffusion matrices with equally high dimension and a large branch number. Because we aim for parameters for which no MDS code is known to exist, we propose to use more flexible algebraic-geometry codes. We present two simple yet efficient algorithms for the software implementation of matrix-vector multi-plication in this context, and derive conditions on the generator matrices of the codes to yield efficient encoders. We then specify an appropriate code and use its automorphisms as well as random sampling to find good such matrices. We provide concrete examples of parameters and implementations, and the corresponding assembly code. We also give performance figures in an example of application which show the interest of our ap-proach.
Type de document :
Communication dans un congrès
Antoine Joux and Amr Youssef. Selected Areas in Cryptology - SAC 2014, Aug 2014, Montreal, Canada. Springer, 8781, pp.243-260, 2014, Lecture Notes in Computer Science. 〈10.1007/978-3-319-13051-4_15〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01094085
Contributeur : Pierre-Alain Fouque <>
Soumis le : jeudi 11 décembre 2014 - 16:00:10
Dernière modification le : jeudi 15 novembre 2018 - 11:57:50
Document(s) archivé(s) le : jeudi 12 mars 2015 - 10:56:52

Fichier

AFK14.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Daniel Augot, Pierre-Alain Fouque, Pierre Karpman. Diffusion Matrices from Algebraic-Geometry Codes with Efficient SIMD Implementation. Antoine Joux and Amr Youssef. Selected Areas in Cryptology - SAC 2014, Aug 2014, Montreal, Canada. Springer, 8781, pp.243-260, 2014, Lecture Notes in Computer Science. 〈10.1007/978-3-319-13051-4_15〉. 〈hal-01094085〉

Partager

Métriques

Consultations de la notice

991

Téléchargements de fichiers

153