Generic Indifferentiability Proofs of Hash Designs

Abstract : —In this paper, we propose a formal analysis of domain extenders for hash functions in the indiffer-entiability framework. We define a general model for domain extenders and provide a unified proof of their security in the form of a generic reduction theorem. Our general model for domain exenders captures many iterated constructions such as domain extenders, modes of operation of symmetric cryptography such as CBC-MAC or blockciphers based on Feistel networks. Its proof has been carried out using the Computational Indistin-guishability Logic of Barthe et al.. The theorem can help designers of hash functions justifying the security of their constructions: they only need to bound the probability of well-defined events. Our model allows to consider many SHA-3 finalists and is instantiated on two well-known constructions, namely Chop-MD and Sponge. Finally, the indifferentiability bounds which we prove are convincing since they match previous proofs.
Type de document :
Communication dans un congrès
25th Computer Security Foundations Symposium, 2012, Jun 2012, Cambridge, United States. IEEE, pp.14, 2012, CSF 2012. 〈10.1109/CSF.2012.13〉
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01094323
Contributeur : Pierre-Alain Fouque <>
Soumis le : vendredi 12 décembre 2014 - 10:10:43
Dernière modification le : jeudi 11 janvier 2018 - 06:19:17
Document(s) archivé(s) le : vendredi 13 mars 2015 - 10:30:58

Fichier

csf12.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

IMAG | UGA | PSL

Citation

Marion Daubignard, Pierre-Alain Fouque, Yassine Lakhnech. Generic Indifferentiability Proofs of Hash Designs. 25th Computer Security Foundations Symposium, 2012, Jun 2012, Cambridge, United States. IEEE, pp.14, 2012, CSF 2012. 〈10.1109/CSF.2012.13〉. 〈hal-01094323〉

Partager

Métriques

Consultations de la notice

114

Téléchargements de fichiers

42