A probabilistic framework for road traffic reconstruction and prediction based on incomplete data

Victorin Martin 1 Jean-Marc Lasgouttes 2 Cyril Furtlehner 3
3 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : We present some new developments in probabilistic road traffic modeling. The problem at stake is real-time prediction of travel times from floating car data (FCD) coming from probe vehicles. We tackle it using a probabilistic model based on an Ising model, well known in statistical physics, and real-time predictions are computed using the Belief Propagation (BP) algorithm. The Ising model estimation requires only pairwise statistics, which is compatible with the use of FCD data. The behavior of the method is illustrated by a numerical experiment on a space-time highway network.
Type de document :
Communication dans un congrès
Actes du GERI SMRT 2011, 2011, Marne-la-Vallée, France. Iffstar, Modélisation et réseaux de transport, A136, pp.91-96, 2014
Liste complète des métadonnées

https://hal.inria.fr/hal-01094376
Contributeur : Jean-Marc Lasgouttes <>
Soumis le : vendredi 12 décembre 2014 - 11:09:26
Dernière modification le : vendredi 25 mai 2018 - 12:02:07

Identifiants

  • HAL Id : hal-01094376, version 1

Collections

Citation

Victorin Martin, Jean-Marc Lasgouttes, Cyril Furtlehner. A probabilistic framework for road traffic reconstruction and prediction based on incomplete data. Actes du GERI SMRT 2011, 2011, Marne-la-Vallée, France. Iffstar, Modélisation et réseaux de transport, A136, pp.91-96, 2014. 〈hal-01094376〉

Partager

Métriques

Consultations de la notice

328