A contribution to the discovery of multidimensional patterns in healthcare trajectories

Elias Egho 1 Nicolas Jay 1 Chedy Raïssi 1 Dino Ienco 2 Pascal Poncelet 2 Maguelonne Teisseire 2 Amedeo Napoli 1
1 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
2 ADVANSE - ADVanced Analytics for data SciencE
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Sequential pattern mining is aimed at extracting correlations among temporal data. Many different methods were proposed to either enumerate sequences of set valued data (i.e., itemsets) or sequences containing dimensional items. However, in real-world sce-narios, data sequences are described as combination of both multidimensional items and itemsets. These heterogeneous descriptions cannot be handled by traditional approaches. In this paper we propose a new approach called MMISP (Mining Multidimensional Itemset Sequential Patterns) to extract patterns from complex sequential database including both multidimensional items and itemsets. The novelties of the proposal lies in: (i) the way in which the data are efficiently compressed; (ii) the ability to reuse and adopt sequential pat-tern mining algorithms and (iii) the extraction of new kind of patterns. We introduce a case-study on real-world data from a regional healthcare system and we point out the use-fulness of the extracted patterns. Additional experiments on synthetic data highlights the efficiency and scalability of the approach MMISP.
Type de document :
Article dans une revue
Journal of Intelligent Information Systems, Springer Verlag, 2014, 42, pp.283 - 305. 〈10.1007/s10844-014-0309-4〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01094377
Contributeur : Elias Egho <>
Soumis le : mardi 13 janvier 2015 - 19:27:47
Dernière modification le : jeudi 11 janvier 2018 - 06:27:21
Document(s) archivé(s) le : samedi 15 avril 2017 - 08:10:41

Fichier

JIIS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Elias Egho, Nicolas Jay, Chedy Raïssi, Dino Ienco, Pascal Poncelet, et al.. A contribution to the discovery of multidimensional patterns in healthcare trajectories. Journal of Intelligent Information Systems, Springer Verlag, 2014, 42, pp.283 - 305. 〈10.1007/s10844-014-0309-4〉. 〈hal-01094377〉

Partager

Métriques

Consultations de la notice

338

Téléchargements de fichiers

147