Feature, Configuration, History : a bio-inspired framework for information representation in neural networks

Frédéric Alexandre 1, 2, 3, * Maxime Carrere 1, 2, 3 Randa Kassab 1, 2, 3
* Auteur correspondant
1 Mnemosyne - Mnemonic Synergy
LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest, IMN - Institut des Maladies Neurodégénératives [Bordeaux]
Abstract : Artificial Neural Networks are very efficient adaptive models but one of their recognized weaknesses is about information representation, often carried out in an input vector without a structure. Beyond the classical elaboration of a hierarchical representation in a series of layers, we report here inspiration from neuroscience and argue for the design of heterogenous neural networks, processing information at feature, configuration and history levels of granularity, and interacting very efficiently for high-level and complex decision making. This framework is built from known characteristics of the sensory cortex, the hippocampus and the prefrontal cortex and is exemplified here in the case of pavlovian conditioning, but we propose that it can be advantageously applied in a wider extent, to design flexible and versatile information processing with neuronal computation.
Type de document :
Communication dans un congrès
International Conference on Neural Computation Theory and Applications, Oct 2014, Rome, Italy. 2014
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01095036
Contributeur : Frédéric Alexandre <>
Soumis le : dimanche 14 décembre 2014 - 22:57:50
Dernière modification le : jeudi 11 janvier 2018 - 06:25:42
Document(s) archivé(s) le : dimanche 15 mars 2015 - 10:22:04

Fichier

NCTA_Alexandre14.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01095036, version 1

Citation

Frédéric Alexandre, Maxime Carrere, Randa Kassab. Feature, Configuration, History : a bio-inspired framework for information representation in neural networks. International Conference on Neural Computation Theory and Applications, Oct 2014, Rome, Italy. 2014. 〈hal-01095036〉

Partager

Métriques

Consultations de la notice

350

Téléchargements de fichiers

74