A representation of the relative entropy with respect to a diffusion process in terms of its infinitesimal-generator

Olivier Faugeras 1 James Maclaurin 1, *
* Auteur correspondant
1 NEUROMATHCOMP - Mathematical and Computational Neuroscience
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
Abstract : In this paper we derive an integral (with respect to time) representation of the relative entropy (or Kullback-Leibler Divergence) R(µ||P), where µ and P are measures on C([0, T ]; R d). The underlying measure P is a weak solution to a Martingale Problem with continuous coefficients. Our representation is in the form of an integral with respect to its infinitesimal generator. This representation is of use in statistical inference (particularly involving medical imaging). Since R(µ||P) governs the exponential rate of convergence of the empirical measure (according to Sanov's Theorem), this representation is also of use in the numerical and analytical investigation of finite-size effects in systems of interacting diffusions.
Type de document :
Article dans une revue
Entropy, MDPI, 2014, 16, pp.17. 〈10.3390/e16126705〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01096777
Contributeur : Olivier Faugeras <>
Soumis le : jeudi 18 décembre 2014 - 11:23:24
Dernière modification le : jeudi 11 janvier 2018 - 17:04:47
Document(s) archivé(s) le : lundi 23 mars 2015 - 16:35:53

Fichier

entropy-68596-revised-layout.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Olivier Faugeras, James Maclaurin. A representation of the relative entropy with respect to a diffusion process in terms of its infinitesimal-generator. Entropy, MDPI, 2014, 16, pp.17. 〈10.3390/e16126705〉. 〈hal-01096777〉

Partager

Métriques

Consultations de la notice

291

Téléchargements de fichiers

160