Sequential pattern mining for customer relationship management analysis

Abstract : Customer Relationship Management (CRM) is a set of tools for managing a company’s interactions with its customers. Extracting the frequent interaction behaviors from the CRM database is useful to better understand the customers habits and to improve the company services. In this article, we propose an preliminary work on the study of interactive tool to mine frequent time-gap sequences in a CRM database. We propose a tool based on the TGSP algorithm of Yen et Lee (2013) to extract frequent sequential patterns with time-gap information. The extracted patterns are visualised in a tree view and the analyst can interact with this view to support its analysis of the patterns.
Type de document :
Communication dans un congrès
Atelier GAST@EGC2015, Jan 2015, Luxembourg, Luxembourg
Liste complète des métadonnées

https://hal.inria.fr/hal-01097466
Contributeur : Thomas Guyet <>
Soumis le : vendredi 19 décembre 2014 - 16:41:28
Dernière modification le : jeudi 19 octobre 2017 - 15:24:05

Identifiants

  • HAL Id : hal-01097466, version 1

Citation

Kiril Gashteovski, Thomas Guyet, René Quiniou, Alzennyr Da Silva, Véronique Masson. Sequential pattern mining for customer relationship management analysis. Atelier GAST@EGC2015, Jan 2015, Luxembourg, Luxembourg. 〈hal-01097466〉

Partager

Métriques

Consultations de la notice

470