Large Deviations of an Ergodic Synchronous Neural Network with Learning

Olivier Faugeras 1 James Maclaurin 1
1 NEUROMATHCOMP - Mathematical and Computational Neuroscience
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
Abstract : In this work we determine a Large Deviation Principle (LDP) for a model of neurons interacting on a lattice Z^d. The neurons are subject to correlated external noise, which is modelled as an infinite-dimensional stochastic integral. The probability law governing the noise is strictly stationary, and we are therefore able to find a LDP for the probability laws Pi^n governing the ergodic empirical measure mu^n generated by the neurons in a cube of length (2n+1) as n asymptotes to infinity. We use this LDP to determine an LDP for the neural network model. The connection weights between the neurons evolve according to a learning rule / neuronal plasticity, and these results are adaptable to a large variety of specific types of neural network. This LDP is of great use in the mathematical modelling of neural networks, because it allows a quantification of the likelihood of the system deviating from its limit, and also a determination of which direction the system is likely to deviate. The work is also of interest because there are nontrivial correlations between the neurons even in the asymptotic limit, thereby presenting itself as a generalisation of traditional mean-field models.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

Littérature citée [53 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01100020
Contributeur : Olivier Faugeras <>
Soumis le : lundi 5 janvier 2015 - 16:54:27
Dernière modification le : jeudi 11 janvier 2018 - 16:14:44
Document(s) archivé(s) le : mercredi 3 juin 2015 - 16:50:45

Fichier

infiniteldims.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01100020, version 1
  • ARXIV : 1404.0732

Collections

Citation

Olivier Faugeras, James Maclaurin. Large Deviations of an Ergodic Synchronous Neural Network with Learning. 2014. 〈hal-01100020〉

Partager

Métriques

Consultations de la notice

288

Téléchargements de fichiers

122