Separation of Dependent Autoregressive Sources Using Joint Matrix Diagonalization

Abstract : This letter proposes a novel technique for the blind separation of autoregressive (AR) sources. The latter relies on the joint diagonalization (JD) of appropriate AR matrix coefficients of the observed signals and can be applied to the separation of statistically dependent sources. The developed algorithm is referred to as ’DARSS-JD’ (for Dependent AR Source Separation using JD). Through the simulation experiments, DARSS-JD is shown to overcome existing second order separation methods with a relatively moderate computational cost.
Type de document :
Article dans une revue
IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2014, pp.4
Liste complète des métadonnées

https://hal.inria.fr/hal-01103038
Contributeur : Karim Abed-Meraim <>
Soumis le : mardi 13 janvier 2015 - 21:35:03
Dernière modification le : mercredi 29 novembre 2017 - 09:23:06

Identifiants

  • HAL Id : hal-01103038, version 1

Collections

Citation

Abdelwaheb Boudjellal, Mesloub Ammar, Karim Abed-Meraim, Adel Belouchrani. Separation of Dependent Autoregressive Sources Using Joint Matrix Diagonalization. IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2014, pp.4. 〈hal-01103038〉

Partager

Métriques

Consultations de la notice

61