Approximate Bayesian Computation, stochastic algorithms and non-local means for complex noise models

Abstract : In this paper, we present a stochastic NL-means-based denoising algorithm for generalized non-parametric noise models. First, we provide a statistical interpretation to current patch-based neighborhood filters and justify the Bayesian inference that needs to explicitly accounts for discrepancies between the model and the data. Furthermore, we investigate the Approximate Bayesian Computation (ABC) rejection method combined with density learning techniques for handling situations where the posterior is intractable or too prohibitive to calculate. We demonstrate our stochastic Gamma NL-means (SGNL) on real images corrupted by non-Gaussian noise.
Type de document :
Communication dans un congrès
IEEE International Conference on Image Processing, Oct 2014, Paris, France. pp.4, 2014
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01103322
Contributeur : Charles Kervrann <>
Soumis le : vendredi 23 janvier 2015 - 18:31:29
Dernière modification le : mercredi 11 avril 2018 - 01:55:29
Document(s) archivé(s) le : vendredi 24 avril 2015 - 10:56:11

Fichier

2014-ICIP-GNL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01103322, version 1

Collections

Citation

Charles Kervrann, Philippe Roudot, François Waharte. Approximate Bayesian Computation, stochastic algorithms and non-local means for complex noise models. IEEE International Conference on Image Processing, Oct 2014, Paris, France. pp.4, 2014. 〈hal-01103322〉

Partager

Métriques

Consultations de la notice

257

Téléchargements de fichiers

178