Conditional quantile estimation through optimal quantization

Abstract : In this paper, we use quantization to construct a nonparametric estimator of conditional quantiles of a scalar response Y given a d-dimensional vector of covariates X. First we focus on the population level and show how optimal quantization of X, which consists in discretizing X by projecting it on an appropriate grid of N points, allows to approximate conditional quantiles of Y given X. We show that this approximation is arbitrarily good as N goes to infinity and provide a rate of convergence for the approximation error. Then we turn to the sample case and define an estimator of conditional quantiles based on quantization ideas. We prove that this estimator is consistent for its fixed-N population counterpart. The results are illustrated on a numerical example. Dominance of our estimators over local constant/linear ones and nearest neighbor ones is demonstrated through extensive simulations in the companion paper Charlier et al. (2014).
Type de document :
Article dans une revue
Journal of Statistical Planning and Inference, Elsevier, 2015, 156, pp.14 - 30. 〈10.1016/j.jspi.2014.08.003〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01108482
Contributeur : Isabelle Charlier <>
Soumis le : jeudi 22 janvier 2015 - 17:50:29
Dernière modification le : jeudi 11 janvier 2018 - 06:22:11
Document(s) archivé(s) le : vendredi 11 septembre 2015 - 08:35:23

Fichier

Article 1 revision.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Isabelle Charlier, Davy Paindaveine, Jérôme Saracco. Conditional quantile estimation through optimal quantization. Journal of Statistical Planning and Inference, Elsevier, 2015, 156, pp.14 - 30. 〈10.1016/j.jspi.2014.08.003〉. 〈hal-01108482〉

Partager

Métriques

Consultations de la notice

392

Téléchargements de fichiers

116