Analyzing Trajectories on Grassmann Manifold for Early Emotion Detection from Depth Videos

Abstract : — This paper proposes a new framework for online detection of spontaneous emotions from low-resolution depth se-quences of the upper part of the body. To face the challenges of this scenario, depth videos are decomposed into subsequences, each modeled as a linear subspace, which in turn is represented as a point on a Grassmann manifold. Modeling the temporal evolution of distances between subsequences of the underlying manifold as a one-dimensional signature, termed Geometric Motion History, permits us to encompass the temporal signature into an early detection framework using Structured Output SVM, thus enabling online emotion detection. Results obtained on the publicly available Cam3D Kinect database validate the proposed solution, also demonstrating that the upper body, instead of the face alone, can improve the performance of emotion detection.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01109468
Contributeur : Boulbaba Ben Amor <>
Soumis le : jeudi 5 février 2015 - 10:32:44
Dernière modification le : jeudi 11 janvier 2018 - 06:23:15
Document(s) archivé(s) le : mercredi 6 mai 2015 - 10:05:37

Fichier

Fg2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01109468, version 1

Citation

Taleb Alashkar, Boulbaba Ben Amor, Stefano Berretti, Mohamed Daoudi. Analyzing Trajectories on Grassmann Manifold for Early Emotion Detection from Depth Videos. 2015. 〈hal-01109468〉

Partager

Métriques

Consultations de la notice

85

Téléchargements de fichiers

266