Combination of One-Class Support Vector Machines for Classification with Reject Option

Blaise Hanczar 1, 2, * Michèle Sebag 3, 2
* Auteur correspondant
2 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : This paper focuses on binary classification with reject op-tion, enabling the classifier to detect and abstain hazardous decisions. While reject classification produces in more reliable decisions, there is a tradeoff between accuracy and rejection rate. Two type of rejection are considered: ambiguity and outlier rejection. The state of the art mostly handles ambiguity rejection and ignored outlier rejection. The proposed approach, referred as CONSUM, handles both ambiguity and outliers detection. Our method is based on a quadratic constrained optimization formulation, combining one-class support vector machines. An adapta-tion of the sequential minimal optimization algorithm is proposed to solve the minimization problem. The experimental study on both artifi-cial and real world datasets exams the sensitivity of the CONSUM with respect to the hyper-parameters and demonstrates the superiority of our approach.
Type de document :
Communication dans un congrès
Calders, Toon and Esposito, Floriana and Hüllermeier, Eyke and Meo, Rosa. Machine Learning and Knowledge Discovery in Databases - Part I, Sep 2014, Nancy, France. Lecture Notes in Artificial Intelligence, 8724, pp.547 - 562, 2014, Machine Learning and Knowledge Discovery in Databases - Part I. 〈10.1007/978-3-662-44848-9_35〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01109774
Contributeur : Marc Schoenauer <>
Soumis le : jeudi 29 janvier 2015 - 14:04:59
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : samedi 15 avril 2017 - 23:57:50

Fichier

hanczarSebagECML2014-author.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Blaise Hanczar, Michèle Sebag. Combination of One-Class Support Vector Machines for Classification with Reject Option. Calders, Toon and Esposito, Floriana and Hüllermeier, Eyke and Meo, Rosa. Machine Learning and Knowledge Discovery in Databases - Part I, Sep 2014, Nancy, France. Lecture Notes in Artificial Intelligence, 8724, pp.547 - 562, 2014, Machine Learning and Knowledge Discovery in Databases - Part I. 〈10.1007/978-3-662-44848-9_35〉. 〈hal-01109774〉

Partager

Métriques

Consultations de la notice

298

Téléchargements de fichiers

302