Identitites for Field Extensions Generalizing the Ohno–Nakagawa Relations

Abstract : In previous work, Ohno [Ohn97] conjectured, and Nakagawa [Nak98] proved, relations between the counting functions of certain cubic fields. These relations may be viewed as complements to the Scholz reflection principle, and Ohno and Nakagawa deduced them as consequences of 'extra functional equations' involving the Shintani zeta functions associated to the prehomogeneous vector space of binary cubic forms. In the present paper we generalize their result by proving a similar identity relating certain degree fields with Galois groups D and F respectively, for any odd prime, and in particular we give another proof of the Ohno–Nakagawa relation without appealing to binary cubic forms.
Type de document :
Article dans une revue
Compositio Mathematica, Foundation Compositio Mathematica, 2015, 151 (11), pp.2059-2075
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01109980
Contributeur : Andreas Enge <>
Soumis le : mardi 27 janvier 2015 - 11:47:31
Dernière modification le : jeudi 11 janvier 2018 - 06:22:36
Document(s) archivé(s) le : mardi 28 avril 2015 - 10:32:01

Fichier

identities-field-extensions-fi...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01109980, version 1

Collections

Citation

Henri Cohen, Simon Rubinstein-Salzedo, Frank Thorne. Identitites for Field Extensions Generalizing the Ohno–Nakagawa Relations. Compositio Mathematica, Foundation Compositio Mathematica, 2015, 151 (11), pp.2059-2075. 〈hal-01109980〉

Partager

Métriques

Consultations de la notice

284

Téléchargements de fichiers

135