Fast Edge-Aware Processing via First Order Proximal Approximation

Abstract : We present a new framework for fast edge-aware processing of images and videos. The proposed smoothing method is based on an optimization formulation with a non-convex sparse regularization for a better smoothing behavior near strong edges. We develop mathematical tools based on first order approximation of proximal operators to accelerate the proposed method while maintaining high-quality smoothing. The first order approximation is used to estimate a solution of the proximal form in a half-quadratic solver, and also to derive a warm-start solution that can be calculated quickly when the image is loaded by the user. We extend the method to large-scale processing by estimating the smoothing operation with independent 1D convolution operations. This approach linearly scales to the size of the image and can fully take advantage of parallel processing. The method supports full color filtering and turns out to be temporally coherent for fast video processing. We demonstrate the performance of the proposed method on various applications including image smoothing, detail manipulation, HDR tone-mapping, fast edge simplification and video edge-aware processing.
Type de document :
Article dans une revue
IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2015, PP (99), pp.14. 〈http://www.computer.org/csdl/trans/tg/preprint/07018984.pdf〉. 〈10.1109/TVCG.2015.2396064〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01118542
Contributeur : H. Yahia <>
Soumis le : jeudi 19 février 2015 - 12:23:47
Dernière modification le : mercredi 3 janvier 2018 - 14:18:08
Document(s) archivé(s) le : mercredi 20 mai 2015 - 10:45:14

Fichier

ieee tvcg 2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Hicham Badri, Hussein Yahia, Driss Aboutajdine. Fast Edge-Aware Processing via First Order Proximal Approximation. IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2015, PP (99), pp.14. 〈http://www.computer.org/csdl/trans/tg/preprint/07018984.pdf〉. 〈10.1109/TVCG.2015.2396064〉. 〈hal-01118542〉

Partager

Métriques

Consultations de la notice

411

Téléchargements de fichiers

617