3D object pose detection using foreground/background segmentation

Antoine Petit 1, 2 Eric Marchand 2 Rafiq Sekkal 2 Keyvan Kanani 3
2 Lagadic - Visual servoing in robotics, computer vision, and augmented reality
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : — This paper addresses the challenge of detecting and localizing a poorly textured known object, by initially estimating its complete 3D pose in a video sequence. Our solution relies on the 3D model of the object and synthetic views. The full pose estimation process is then based on foreground/background segmentation and on an efficient prob-abilistic edge-based matching and alignment procedure with the set of synthetic views, classified through an unsupervised learning phase. Our study focuses on space robotics applications and the method has been tested on both synthetic and real images, showing its efficiency and convenience, with reasonable computational costs.
Type de document :
Communication dans un congrès
IEEE Int. Conf. on Robotics and Automation, ICRA'15, May 2015, Seattle, United States
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01121583
Contributeur : Eric Marchand <>
Soumis le : lundi 2 mars 2015 - 11:06:59
Dernière modification le : mardi 16 janvier 2018 - 15:54:11
Document(s) archivé(s) le : mardi 2 juin 2015 - 09:32:01

Fichier

2015-icra-petit-v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01121583, version 1

Citation

Antoine Petit, Eric Marchand, Rafiq Sekkal, Keyvan Kanani. 3D object pose detection using foreground/background segmentation. IEEE Int. Conf. on Robotics and Automation, ICRA'15, May 2015, Seattle, United States. 〈hal-01121583〉

Partager

Métriques

Consultations de la notice

341

Téléchargements de fichiers

346