Decoding MT Motion Response for Optical Flow Estimation: An Experimental Evaluation

Abstract : Motion processing in primates is an intensely studied problem in visual neurosciences and after more than two decades of research, representation of motion in terms of motion energies computed by V1-MT feedforward interactions remains a strong hypothesis. Thus, decoding the motion energies is of natural interest for developing biologically inspired computer vision algorithms for dense optical flow estimation. Here, we address this problem by evaluating four strategies for motion decoding: intersection of constraints, maximum likelihood, linear regression on MT responses and neural network based regression using multi scale-features. We characterize the performances and the current limitations of the different strategies, in terms of recovering dense flow estimation using Middlebury benchmark dataset widely used in computer vision, and we highlight key aspects for future developments.
Type de document :
Rapport
[Research Report] RR-8696, INRIA Sophia-Antipolis, France; University of Genoa, Genoa, Italy; INT la Timone, Marseille, France; INRIA. 2015
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01131100
Contributeur : N V Kartheek Medathati <>
Soumis le : jeudi 12 mars 2015 - 22:19:12
Dernière modification le : jeudi 3 mai 2018 - 13:32:58
Document(s) archivé(s) le : lundi 17 avril 2017 - 11:14:43

Fichier

RR-8696.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01131100, version 1

Citation

N V Kartheek Medathati, Manuela Chessa, Guillaume Masson, Pierre Kornprobst, Fabio Solari. Decoding MT Motion Response for Optical Flow Estimation: An Experimental Evaluation. [Research Report] RR-8696, INRIA Sophia-Antipolis, France; University of Genoa, Genoa, Italy; INT la Timone, Marseille, France; INRIA. 2015. 〈hal-01131100〉

Partager

Métriques

Consultations de la notice

343

Téléchargements de fichiers

328