Relational Linear Programs

Abstract : We propose relational linear programming, a simple framework for combing linear programs (LPs) and logic programs. A relational linear program (RLP) is a declarative LP template defining the objective and the constraints through the logical concepts of objects, relations, and quantified variables. This allows one to express the LP objective and constraints relationally for a varying number of individuals and relations among them without enumerating them. Together with a logical knowledge base, effectively a logical program consisting of logical facts and rules, it induces a ground LP. This ground LP is solved using lifted linear programming. That is, symmetries within the ground LP are employed to reduce its dimensionality, if possible, and the reduced program is solved using any off-the-shelf LP solver. In contrast to mainstream LP template languages like AMPL, which features a mixture of declarative and imperative programming styles, RLP's relational nature allows a more intuitive representation of optimization problems over relational domains. We illustrate this empirically by experiments on approximate inference in Markov logic networks using LP relaxations, on solving Markov decision processes, and on collective inference using LP support vector machines.
Liste complète des métadonnées

Littérature citée [72 références]  Voir  Masquer  Télécharger
Contributeur : Thoth Team <>
Soumis le : dimanche 15 mars 2015 - 15:26:06
Dernière modification le : lundi 23 mars 2015 - 14:02:03
Document(s) archivé(s) le : mardi 16 juin 2015 - 10:11:06


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01131726, version 1
  • ARXIV : 1410.3125


Kristian Kersting, Martin Mladenov, Pavel Tokmakov. Relational Linear Programs. 2015. 〈hal-01131726〉



Consultations de la notice


Téléchargements de fichiers