An Efficient Volumetric Framework for Shape Tracking

Benjamin Allain 1 Jean-Sébastien Franco 1 Edmond Boyer 1
1 MORPHEO - Capture and Analysis of Shapes in Motion
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Recovering 3D shape motion using visual information is an important problem with many applications in computer vision and computer graphics, among other domains. Most existing approaches rely on surface-based strategies, where surface models are fit to visual surface observations. While numerically plausible, this paradigm ignores the fact that the observed surfaces often delimit volumetric shapes, for which deformations are constrained by the volume inside the shape. Consequently, surface-based strategies can fail when the observations define several feasible surfaces, whereas volumetric considerations are more restrictive with respect to the admissible solutions. In this work, we investigate a novel volumetric shape parametrization to track shapes over temporal sequences. In constrast to Eulerian grid discretizations of the observation space, such as voxels, we consider general shape tesselations yielding more convenient cell decompositions, in particular the Centroidal Voronoi Tesselation. With this shape representation, we devise a tracking method that exploits volumetric information, both for the data term evaluating observation conformity, and for expressing deformation constraints that enforce prior assumptions on motion. Experiments on several datasets demonstrate similar or improved precisions over state-of-the-art methods, as well as improved robustness, a critical issue when tracking sequentially over time frames.
Type de document :
Communication dans un congrès
CVPR 2015 - IEEE International Conference on Computer Vision and Pattern Recognition, Jun 2015, Boston, United States. IEEE, pp.268-276, 〈10.1109/CVPR.2015.7298623〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-01141207
Contributeur : Benjamin Allain <>
Soumis le : jeudi 2 juillet 2015 - 16:56:26
Dernière modification le : jeudi 9 février 2017 - 13:08:10
Document(s) archivé(s) le : mardi 25 avril 2017 - 22:12:43

Licence


Copyright (Tous droits réservés)

Identifiants

Collections

Citation

Benjamin Allain, Jean-Sébastien Franco, Edmond Boyer. An Efficient Volumetric Framework for Shape Tracking. CVPR 2015 - IEEE International Conference on Computer Vision and Pattern Recognition, Jun 2015, Boston, United States. IEEE, pp.268-276, 〈10.1109/CVPR.2015.7298623〉. 〈hal-01141207〉

Partager

Métriques

Consultations de
la notice

1077

Téléchargements du document

1752