Kernelizing Spatially Consistent Visual Matches for Fine-Grained Classification

Abstract : This paper introduces a new image representation relying on the spatial pooling of geometrically consistent visual matches. We therefore introduce a new match kernel based on the in- verse rank of the shared nearest neighbors combined with local geometric constraints. To avoid over tting and reduce processing costs, the dimensionality of the resulting over- complete representation is further reduced by hierarchically pooling the raw consistent matches according to their spa- tial position in the training images. The nal image repre- sentation is obtained by concatenating the resulting feature vectors at several resolutions. Learning from these represen- tations using a logistic regression classi er is shown to pro- vide excellent ne-grained classi cation performances out- performing the results reported in the literature on several classi cation tasks.
Type de document :
Communication dans un congrès
ICMR: International Conference on Multimedia Retrieval, Jun 2015, Shangai, China. 5th ACM on International Conference on Multimedia Retrieval, pp.155-162, 2015, 〈http://www.sigmm.org/archive/ICMR/icmr15/index.html〉. 〈10.1145/2671188.2749328〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01145988
Contributeur : Alexis Joly <>
Soumis le : lundi 27 avril 2015 - 14:19:42
Dernière modification le : mercredi 5 décembre 2018 - 14:26:01

Identifiants

Collections

Citation

Valentin Leveau, Alexis Joly, Olivier Buisson, Patrick Valduriez. Kernelizing Spatially Consistent Visual Matches for Fine-Grained Classification. ICMR: International Conference on Multimedia Retrieval, Jun 2015, Shangai, China. 5th ACM on International Conference on Multimedia Retrieval, pp.155-162, 2015, 〈http://www.sigmm.org/archive/ICMR/icmr15/index.html〉. 〈10.1145/2671188.2749328〉. 〈hal-01145988〉

Partager

Métriques

Consultations de la notice

564