New cascade model for hierarchical joint classification of multisensor and multiresolution remote sensing data

Abstract : This paper addresses the problem of multisensor fusion of COSMO-SkyMed and RADARSAT-2 data together with optical imagery for classification purposes. The proposed method is based on an explicit hierarchical graph-based model that is sufficiently flexible to deal with multisource coregistered images collected at different spatial resolutions by different sensors. An especially novel element of the proposed approach is the use of multiple quad-trees in cascade, each associated with a set of images acquired by different SAR sensors, with the aim to characterize the correlations associated with distinct images from different instruments. Experimental results are shown with COSMO-SkyMed, RADARSAT-2, and Pléiades data 1 .
Type de document :
Communication dans un congrès
IEEE International Geoscience and Remote Sensing Symposium, Jul 2015, Milan, Italy. 2015, 〈http://www.igarss2015.org/〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01161817
Contributeur : Ihsen Hedhli <>
Soumis le : mardi 9 juin 2015 - 11:37:51
Dernière modification le : jeudi 30 novembre 2017 - 09:22:46
Document(s) archivé(s) le : mardi 15 septembre 2015 - 13:27:25

Fichier

IGARSS_2015_Final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01161817, version 1

Collections

Citation

Ihsen Hedhli, Gabriele Moser, Sebastiano B. Serpico, Josiane Zerubia. New cascade model for hierarchical joint classification of multisensor and multiresolution remote sensing data. IEEE International Geoscience and Remote Sensing Symposium, Jul 2015, Milan, Italy. 2015, 〈http://www.igarss2015.org/〉. 〈hal-01161817〉

Partager

Métriques

Consultations de la notice

102

Téléchargements de fichiers

98