Predicting Mental-Imagery Based Brain-Computer Interface Performance from Psychometric Questionnaires

Camille Jeunet 1, 2 Bernard N'Kaoua 3, 1 Martin Hachet 2, 4 Fabien Lotte 4, 2
2 Potioc - Popular interaction with 3d content
LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest
3 Phoenix - Programming Language Technology For Communication Services
LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest, EA4136 - Handicap et système nerveux :Action, communication, interaction: rétablissement de la fonction et de la participation [Bordeaux]
Abstract : Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer via their brain activity, measured while they are performing specific mental tasks. While very promising (e.g., assistive technologies for motor-disabled patients) MI-BCI remain barely used outside laboratories because of the difficulty encountered by users to control such systems. Indeed, although some users obtain very good control performance after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability led the community to look for predictors of MI-BCI control ability. In this paper, we introduce two predictive models of MI-BCI performance, based on a dataset of 17 participants who had to learn to control an MI-BCI by performing 3 MI-tasks: mental rotation, left-hand motor imagery and mental subtraction, across 6 sessions. These models include aspects of participants' personality and cognitive profiles, assessed by questionnaires. Both models, which explain more than 96% and 80% of MI-BCI performance variance, allowed us to define user profiles that could be associated with good BCI performances.
Type de document :
Communication dans un congrès
womENcourage, Sep 2015, Uppsala, Sweden
Liste complète des métadonnées


https://hal.inria.fr/hal-01162415
Contributeur : Camille Jeunet <>
Soumis le : mercredi 10 juin 2015 - 14:42:57
Dernière modification le : mardi 13 décembre 2016 - 01:04:54
Document(s) archivé(s) le : vendredi 11 septembre 2015 - 12:07:14

Fichier

womENcourage-CamilleJEUNET.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01162415, version 1

Collections

Citation

Camille Jeunet, Bernard N'Kaoua, Martin Hachet, Fabien Lotte. Predicting Mental-Imagery Based Brain-Computer Interface Performance from Psychometric Questionnaires. womENcourage, Sep 2015, Uppsala, Sweden. <hal-01162415>

Partager

Métriques

Consultations de
la notice

289

Téléchargements du document

137