Adaptive Neuro-Fuzzy Controller for Multi-Object Tracker

Abstract : Sensitivity to scene such as contrast and illumination intensity, is one of the factors significantly affecting the performance of object trackers. In order to overcome this issue, tracker parameters need to be adapted based on changes in contextual information. In this paper, we propose an intelligent mechanism to adapt the tracker parameters, in a real-time and online fashion. When a frame is processed by the tracker, a controller extracts the contextual information, based on which it adapts the tracker parameters for successive frames. The proposed controller relies on a learned neuro-fuzzy inference system to find satisfactory tracker parameter values. The proposed approach is trained on nine publicly available benchmark video data sets and tested on three unrelated video data sets. The performance comparison indicates clear tracking performance improvement in comparison to tracker with static parameter values, as well as other state-of-the art trackers.
Type de document :
Communication dans un congrès
10th International Conference on Computer Vision Systems, Jul 2015, Copenhagen, Denmark. 2015, 〈http://icvs2015.aau.dk/〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01164734
Contributeur : Duc Phu Chau <>
Soumis le : mercredi 8 juillet 2015 - 13:52:22
Dernière modification le : mardi 24 juillet 2018 - 15:48:19
Document(s) archivé(s) le : vendredi 9 octobre 2015 - 10:05:39

Fichiers

paperICVS15.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01164734, version 1
  • BIBCODE : dpchau

Collections

Citation

Duc Phu Chau, Kartick Subramanian, François Bremond. Adaptive Neuro-Fuzzy Controller for Multi-Object Tracker. 10th International Conference on Computer Vision Systems, Jul 2015, Copenhagen, Denmark. 2015, 〈http://icvs2015.aau.dk/〉. 〈hal-01164734〉

Partager

Métriques

Consultations de la notice

278

Téléchargements de fichiers

346