Compressive Gaussian Mixture Estimation by Orthogonal Matching Pursuit with Replacement

Nicolas Keriven 1 Rémi Gribonval 1
1 PANAMA - Parcimonie et Nouveaux Algorithmes pour le Signal et la Modélisation Audio
Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : This work deals with the problem of fitting a Gaussian Mixture Model (GMM) to a large collection of data. Usual approaches such as the classical Expectation Maximization (EM) algorithm are known to perform well but require extensive access to the data. The proposed method compresses the entire database into a single low-dimensional sketch that can be computed in one pass then directly used for GMM estimation. This sketch can be seen as resulting from the application of a linear operator to the underlying probability distribution, thus establishing a connection between our method and generalized compressive sensing. In particular, the new algorithms introduced to estimate GMMs are similar to usual greedy algorithms in compressive sensing.
Type de document :
Document associé à des manifestations scientifiques
SPARS 2015, Jul 2015, Cambridge, United Kingdom
Liste complète des métadonnées

https://hal.inria.fr/hal-01165984
Contributeur : Nicolas Keriven <>
Soumis le : dimanche 21 juin 2015 - 17:22:40
Dernière modification le : mercredi 16 mai 2018 - 11:24:07
Document(s) archivé(s) le : mardi 15 septembre 2015 - 20:12:30

Fichier

spars_abstract.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01165984, version 1

Citation

Nicolas Keriven, Rémi Gribonval. Compressive Gaussian Mixture Estimation by Orthogonal Matching Pursuit with Replacement. SPARS 2015, Jul 2015, Cambridge, United Kingdom. 〈hal-01165984〉

Partager

Métriques

Consultations de la notice

982

Téléchargements de fichiers

209